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Abstract

In this report, we present a sequential minimal optimizatioutine for the
principle of relevant information. The optimization prebi is broken down into
smaller subproblems that can be solved sequentially. @ondiunder which this
approach is feasible are verified and an algorithm is prapo&khough the algo-
rithm has computation complexity can 6¥n?), the memory complexity is linear
in the size of the sample allowing for larger data sets thmtammon in practical
applications.

1 Introduction

Support vector machines and in general kernel methods res@nie standard in
machine learning community. These methods have becomdywaddeepted and
have shown good results in several practical applicatibiosvever, a great part of
their success is due to possibility of implementing rouditteat provide solutions
for moderately large scale problems. Otherwise, theseadstivould be merely an
interesting mental exercise. One of the main technicalkdifiies when faced with
real applications is that the size of the dataset becomesyamportant constraint
when it comes to selecting a method. The time and memory @xitigls become
relevant for data sets above five thousand instances. limefscenarios the most
decisive factor is the memory complexitysince super-linear growth of storage
become intractable for the size of the samples commonlywerieced in current
and new applications.

In the literature, two main approaches have been taken t@ katael meth-
ods applicable in large scale problems. Low rank approxonatsuch as Nystrom
[12], incomplete Cholesky decomposition [2, 10], subsethoés [11], decompose
the Gram matri¥ into a produciGG ™ whereG is a(n x k) matrix withk < n.
This methods scale with computational complexitgnk?) and memory complex-
ity O(nk). These methods represent significant computational savihgn the

lunder reasonable time complexity (polynomial complexity)



eigenvalues of the Gram matrix decay rapidly; nevertheksshe dimensionality
of the input space increases, we may run into difficultiesesthe rate of decay in
the spectrum may require larger ranks(largjeto obtain the desired accuracy.

The second approach is related to the exploiting propediezptimization
problem such as convexity the type of constraints. This leas the case for algo-
rithms such support vector machines for which, optimizatian be broken down
into smaller subproblems that can be iteratively solvedrifento solve the full
problem. Early stages employed chunking [1], which breaksrdthe problem
by discarding vectors with zero Lagrange multipliers frombsets of points, the
complexity of the problem is reduced to the number of suppectors. Further
analysis on the optimality of solving a sequence of subjeroklwas provided in
[6], from which an algorithm that solves subproblems of fis&e was shown to
converge to the global optimum. Keeping the size of the saliipm independent
of the number of support vectors is extremely important esieeen the chunk-
ing scheme becomes intractable when the number of suppcidreesxceed the
memory resources. Further developments on the above idda tae SVM™9h!
algorithm described in [3] and the sequential minimal optation (SMO) pro-
posed in [7]. Althought SVNi9"** has been shown experimentally to be faster, the
SMO algorithm is particularly appealing in the sense thatetis no need to resort
to a quadratic programing routine to solve the subproblefif® solution to the
subproblem in SMO can be found analytically since it onlyoime two variables
at the time.

In our work, we develop an optimization scheme similar imispiith the SMO
algorithm to find a solution to an objective function callbé principle of relevant
information (PRI) [8]. This objective function is motivatdy information the-
ory, by considering that the process of finding regularitiethe data correspond
to a constrained minimization of its entropy. Section 2ddtrces information
guantities based on Renyi’'s entropy along with the PRI diyjedunction. Next
in Section 3, a constrained optimization problem based erestimators of the
quantities involved in the PRI objective function is dedv&Ve prove that solving
the first order KKT conditions is necessary and sufficientdptimality. In Sec-
tion 4, the conditions for which the decomposition of thelpeon into subprob-
lems guarantee convergence, are verified. Following, dléefaresentation of the
derivation of a sequential minimal optimization for the R&provided along with
some considerations for implementation. Results in Sedidocus on observ-
ing the behavior of the algorithm in terms of computationdion large samples
and different regimes of operation. Finally, some condnsiand a motivation for
future work are discussed in Section 7.

2 Elements from Renyi’'s Entropy and and Rel-
evant Information

Renyi’'sa-order entropy entropy is a natural extension of the widelgvin Shan-
non’s entropy [9]. In the continuous case for a random végidbwith probability
density function (PDFY (z) and supportY, thea-entropyH, (X) is defined as:
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As o — 1 we approximate to Shannon’s entropy. Extensions for x&lantropy
also exist, a modified version of Renyi's definition@frelative entropy between
random variables with PDF§andg is given in [4],

Uo7 (Jo)*
(J 7o)

Similarly, Shannon'’s relative entropy (Kullback-Leibt&vergence) is the limit for
« — 1. An important component in the relative entropy is the crassopy term
H.(f;g) that quantifies the information gain from observipgith respect to the
“true” density f. It turns out that for the case of = 2, the above quantities can be
expressed, under some restrictions, as functions of imogiupts between PDFs.
In particular, the2-order entropy off and cross-entropy betweghandg, can be
respectively expressed as,

Do (fllg) = log : 2

Ha(f) = —log / F(z)ds;

3)
Ho(f:9) = — log / F(@)g(x)d,

the associated relative entropy of or@es called the Cauchy-Schwarz divergence
and is defined as follows:

1 (f f9)°
D = ——log ——~"F—~. 4
cs(fllg) = —7 log T () 4
As we mentioned before, structure can be understood asarégs on the
outcomes of a process. Therefore, the entropy related toutmes can be
attributed in part to the underlying structure, and the teg@articular to each out-
come as details or simple non related perturbations. Hemeean think of the
minimization of entropy as a means for finding such regu&sitSuppose we are
given a random variabl& with PDF g, for which we want to find a description
in terms of a PDFf with reduced entropy, that is, a variable that captures the
underlying structure of. The principle of relevant information (PRI) formulates
the above problem as a trade-off between the entfépfyf) of X and its descrip-
tive power about the observed random variabli@ terms of their relative entropy
Dcs(fl|g). For a fixed PDFg € F the objective is given by:

J(f) = Hz(f) + 2ADcs(f119), ®)

where is the trade-off parameter. The minimization.bivithin a set of admis-
sible PDFsF should lead to a functiorf € F that has minimum entropy, but at
the same time has maximum information gain ahputlevertheless, as it is often
the case, neitheg nor a suitable spacé& are given directly. The only available
information abouy is encoded in a samplg = {z;}_,, and some assumptions
about the function clas must be made in order to obtain a tractable solution.
The following section describes a solution to the probleat #rises from the non-
parametric estimator of the quantities in equation (3),clvtis based on weighted
Parzen window method.



3 The Information Potential and Principle of
Relevant Information

For the setF of probability density functions that are square integeablR", we
can define the cross-information potenfial(CIP), as a bilinear form that maps
densitiesf;, f; € F to the real numbers trough the integral,

V(fi fy) = / fi(@) f3(x)dz ®)

R™

Itis easy to see that for a basis of uniformly bounded, sqnéegrable, probability

density functions) is a positive semidefinite function on thean{F}. Now

considerthe sef = {g = > 7" | ko (zi,)|zs € R™, Y oy = 1, anday >

0}, wherek, is a “Parzen” type of kernel, that is, is symmetric, nonnegative,

has bounded integral (can be normalized), and shift inwtwidth o as the scale

parameter. Clearly for any € G we havellgllz < ||ko(z,-)||2 thenceg is

bounded. However, if th&” is non-compact our search space is also non compact.
The objective function for the principle of relevant infaation (5) can be writ-

ten in terms of IP function. Using the Parzen based estimatie@ restrict the

search problem t¢ C F. In this case, we have that equation (5) can be rewritten

as:
V(. 9)
J(f) = -1 — Aog —————=~—— 7
(/) = —log V(J, /) = Aog 35 =500 — ()
straightforward manipulation of the terms yields an edgenaproblem:
arg min [—=(1 =) log V(f, f) — 2A1og V(f, )] 8

Two important aspects of the above objective are: the clafitiee kernel, shape
and sizeo, determines different scales for the analysis; the trdfi@arame-
ter \ defines a set of regimes for the possible solutions to thelgmob As we
previously mentioned, the only available information isyoned in the sam-
ple S = {z;}X,. An approximation of the target densityis then given by
it weighted Parzen window estimatgfz) = Zf;l aiko(zs, ), where where
a; > 0and>"N | a; = 1, in our experiments we limit ta; = 1/N. To enforce
compactness in our search space, we look for a solytitirat has the same form
of g, thatis

flx) = Z&ﬁ(x) = Zﬁm(% x). 9)

wheres; > 0 and Zf;l Bi = 1. By fixing A and evaluating the information
potential between each pdit;, x;) € S x S, we can rewrite (8) in matrix notation
as:

min [()\ “1log BTV — 2xlog ﬁTVa]

N (10)
subject to3; > 0and » _ 8; = 1
=1
Notice that the form of the problem adopted in (10) is not ave@rprogram,
nevertheless it can be turned into an equivalent form thatearecognized as a
convex program.



Proposition 3.1 The convex program,

min 8TV
8
i >
subject to,@T_ 0 (11)
qaB8-n=0
1"g-1=0,

is equivalent tq10), whereq = Va and some) > 0.

Proof 3.1 By definitionn > 0, thus the constrainiog g™ 3 = log 7 is equivalent
to q* B — n = 0. The positive semi definiteness of the information potetatiia
us that3TV 3 > 0, however, taking into accourf’ 3 — n = 0 guarantees strict
inequality; therefore the minimizers g 3TV 3 and3T V3 on the constraint set
defined in(11) are the same. Thence solving the following pseudo-conegxam

mﬁi’n log3'Vg3
subjectto3 > 0 (12)
logq' B =logn
1"s-1=0,

should yield the same solution. Now,The gradient of theatibje in (10) with
respect to the weight vectgt is,

VJ(B) =2 (2&%) V3 -2 (,@Tim) Va. (13)

By including the constraintd™3 = 1 and 8 > 0, for A > 1, the set of KKT
necessary conditions for local optimality in the Lagramgia(3, ., v) = J(8) +
SN wici(B) +e(B) is

%L(@ 1,7) = VI(B) + XL, piggei(B) + v5e(B) =0,

EL(IB7 M, ')/) = C(IB) S 07

ple(B) =0=—u"g, (14)
pn=>0,

= L(B,p,7) =e(B)=0=1"6- 1

There are two possible cases for edth

e 3 >0.
For whichu; = 0 and
t; A qi
2 -2 +y=0, 15
BTV (A— 1) 37Tq (19)
wheret = V3.
e 37 =0.
Yields
t A qi *
2 -2 — Wi 4+y=0. 16
BTVE <Af 1) gTq T (10



Notice thaty = 2 (ﬁ) therefore,

v A ) 1
Qﬂ*Tgﬁ* —2<A_1> ﬁ*qTq_“ +25— =0. 17)

Pre-multiplying(17) by (3 — 3) in the constraint set, yields the following set of
conditions

B-p" {2&\;76&*u*} > 0,Y8>0:q'B=n1"8=1
H*Tﬂ* _ 0
- < 0
>0
logq' " = logn
18" = 1, (18)

which by Theorem A.1 are sufficient conditions for the sofutif a pseudo-convex
function defined on an open set with convex inequality caimg, that in our case
corresponds t¢12)

O

Two important results come from the above proposition. Grebvious from the
statement in the proposition that tells us there exist aivatant convex program
that solves (10). But even better is the one that comes asradwygt of the proof.
The KKT first order conditions in (14) are necessary and gefiido solve (10).

4 Decomposition into Smaller Subproblems

In the proof of Proposition 3.1 we solve a more conveniernmfof (10), for which
we factorize(A—1) from the objective. If we derive the the solution for the amig
problem the two cases (15) and (16) are replaced by:
e 3 >0.
With p; = 0 and

A—1 A
2 ti —2 qu’y:O, (19)
FTVE ' BTq

wheret = V3.
o 87 =0.

A—1 A
T ti =21
B VB B q
Note that combining (19) and (20) with the optingil we have thaty = 2,

using this fact along with the non-negativity pf the following condition
should hold,

— i +y=0. (20)

At; — Bgi > 1, (21)

_ A—1 _ A
whereA = BTV andB = g



Let’s partition the set of indexes of the entries®into 1V, the working set, and

P the complementary set of inactive elements. TBes (,85,, ,BITJ)T, for which
we define the following subproblem:

rgin [(/\ —1)log (/BEVVWW/@W +2BbVrwBw + ﬂgVPPﬂP) +

— 2\ log (ﬂquw + ﬂzTaqp)]

subjectto — Bw <0, and [ﬁ}ﬂ/l +,6}§1] =1
(22)

Similar remarks to the ones made in [6] can be obtained for. (22

e Thetermspa = BEVppBpr andps = B5qp are constant in the subprob-
lem

e The computation 0235V pw Bw is independent of the size &f and also
of the number of nonzerg;’s

e Replacingg;, with i € W with 8; with j € P leaves the cost unchangend
and the feasibility remains intact.

e Ifthe subproblem is optimal before the above replacemeathéw subprob-
lem is optimal if and only ifs; satisfies the optimality conditions.

The so called Buld dowri step is rather obvious. Now theBtld ug' step that
states that moving a variable frof to W gives an strict improvement in the
cost when the subproblem is re-optimized. In our case we wstifyj the build
up since we prove that the KKT first order conditions are nemgsand sufficient
for a solution to (10). These build down and build up stepggesgan strategy
for optimizing (10) by solving smaller subproblems. At eatdration, solve a
subproblem that include a constraint violator picked fréva tomplementary set
P. lterate until optimality conditions are satisfied up tworgodesired level of
accuracy.

5 Sequential Minimal Optimization

In the previous section (4), the optimization problem dato the principle of
information, was decomposed into smaller subproblemsdiatbe solved itera-
tively to achieve the solution to the full problem. An impamt characteristic of
such decomposition is that the size of the workingideaind the complementary
set P, are independent of the number of support vectors in theisoluthat is,
the 5;’s greater than zero. The sequential minimal optimizatiooppsed in [7]
chooses the smallest subproblem that can be solved at eaatioih. This corre-
sponds to solving for two variables at the time, which candenél analytically.
The latter is of particular appeal to the solve PRI since @st does not have an
standard form as itis the case for SVMs (quadratic progrém)efore, we cannot
resort to off the shelf solvers for our problem.

Without loss of generality we will refer to our variables imetworking set
asf; and g2 and the complementary set & By the equality constraint in the
subproblem (22) we have that + 3> = 1 — 851 = w and thences; = w — S».



Let us denote bys; the value of3; from the previous iteration. We can formulate
the subproblem in terms @k, as:

min (A — 1) log A(82) — 2 log B(52)]
B2 ) ) (23)
subjectto 0 < 32 <w, and w = B1 + Pa,
with
A(52) = 53(V11+V2272V12)+2Bz(w(Vlngn)+(v27U1))+w2Vn+2wU1+¢A
wherev; = V8 — V1,81 — ViiB2, andpa = Bp " VppBp; and
B(B2) = B2(q2 — q1) + wq1 + ¢B

whereps = BpTqp. The solution to problem (23) lies on the line segment
B1 = w — B2 with 0 < B2 < w. Computing the derivative of the objective in (23)
yields a second order polynomial gh (Details are given in Appendix B), thus
solving

235 + c1ffa+co =0 (24)
with coefficients:
co = —2(Vi1+ Voo —2Vi2)(q2 — q1)
a = 20 =1)(wq +¢B)(Vi1 + Vaz — 2Vi2) +
2+ D(w(Viz = Vi1) + (v2 —v1))(g2 — q1)
co = 2\ —D(w(Viz — Vi1) + (v2 —v1))(war + ¢B) +

—2X(w?Vi1 4 2wv1 + 0a)(g2 — q1)

conveys candidate solutions that ought be checked aloiigtiétend points of the
line segment. Let; andrs be the roots of (24). Ruling out cases with complex
numbers, we have:

L = min{r1, r2} and U = max{r1, ra2}
the candidate solutions are,
0 L<O 0 U<O0
s1=¢ L 0<L<w andsz= U 0<U<w (25)
w L>w w U>w
If s1 # s2 we check/J(s;) = [(A — 1) log A(s;) — 2A1og B(s;)] and

B2 =arg min {J(s;)} (26)

s;€{s1,52}

otherwise8s = s1 = sa.

5.1 SMO algorithm

The algorithm can be described into three basic steps:



Step 1: Initialization

q < Va
f <« q
B + «
IP(B) + B'a
CIP(B) <+ IP(B)

Step 2: Constants within an iteration

vi 4 fi— Vi — VoiBe

wa <« IP(B)— (2(Bafr + Bafo) — (Bi Vi1 + B3Vaz + 281 Vi22))
o <+ CIP(B)— (Biqr + P2q2)
w <~ P14+ B

Step 3: Updates

B2 < solution described in (26)
fr — w— P2
f « f+(Bo—B2)Vi + (82— B2)Vy
IP(B) + @a+ 2(Bifi+ Baf) — (BiVi1 + B5Vao + 261 Vi22))
CIP(B) <« ¢+ (i1 + P2q2)

Steps 2 and 3 are iterated for different working sets chosenrding to some
heuristics that are described below.

5.2 Selecting the working set

There are two type of constraint violations, an equalitystaint (19) if3; > 0,
and the inequality constraint (21)# = 0. The constraint violations are easy to
compute at each iteration. Lgthe defined as

A—1 A

$=21pe) Pcrr(m)®

27)

the constraint qualifications ate = 2 if 8; > 0, and§; > 2if §; = 0. In teh
description of our algorithm we chose to initialiZewith the same values ak.
However our cost function suggest that points for whicls large will be expected

to become support vectors, thatds > 0. We can then us@ = q/(q*1) as the
initial guess. However this would imply the computationfadt the initialization.

It is customary to choosex = %1. Then at the initial iteration all constraints
will be violated (unless\ — oo). One pass through the whole set taking pairs of
indexes(i, j), wherei correspond to a descending order of the samples according
to f andj's taken at random will create the first stage of sparsenessriweight
vector 3; this is our first heuristic. After this pass, we can check thbe (21) is
satisfied for the curreng;’s that are zero. A second stage suggest checking the
within the set of samples with; > 0, and for which¢; > 2 since they are most
likely to vanish. We will stop when conditions are fulfilledthin ¢ tolerance.
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Figure 1: Computation times for different tolerance leasisl sample sizes
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Figure 2: Number of support vectors for different toleratexels and sample sizes

6 Experiments
6.1 Synthetic Data

Here, we are concerned with the computation of the prinajpleelevant infor-
mation on large sample sizes. The purpose of this experahsatup is to ob-
serve the behavior of the algorithm in terms ofvhich controls the number of
nonzero weights and therefore the number of equality caimés that are much
harder to satisfy. Data is obtained by sampling from a twoedisional mix-
ture of three Gaussians with cent¢fs 0), (3, 3), and(—6, 4); spherical co-
variances).8%1, 1.221, andI; and mixing proportion$).2, 0.3, and0.5, respec-
tively. The kernel employed in our experiments is the Gausgernels(z,y) =
exp (— 5=z ||z — y[|*), with o = 0.2. Figure 1 depicts the computation times
for different tolerance levels on the constraint violai@s well as various sample
sizes and trade off parameterFigure 2 shows the final number of support vectors
(nonzero weights) when the above mentioned parametersidesv

First notice that the kernel size was kept fixed regardless of the size of the
sample. this allows for studying the algorithm behavioeimis of sparsity of data,
which in this case correspond to small sample sizes. Theatate level has a clear
effect on the computation time, but more interesting is ffeceon the number of
support vectors which reduces when the level of accuraggase. On the small
sample regime, the increment on the computation time dugetobre demanding
tolerance levet = 10~ can be attributed to the scarcity of data which makes the
cost function much more sensitive to any change in the weigttor3. In terms
of computational complexity the algorithm behaves withia teasonable levels, In

10



the experiments carried we bound the maximum number otibesmby N log N.
This bound upper bound was never attained by the larger sasiggs and only
reached by small sample sizes on the most demanding scgniduao is, smalk
and large\, since the trade off parametgris closely related with the number of
support vectors and thus the proportion of constraint taotaincreases.

7 Conclusions

We have introduced a sequential minimal optimization atgor for the principle
of relevant information based on weighted density estiomatin order to guaran-
tee convergence of the algorithm, we show that the KarudimKiucker first order
optimality condition are necessary and sufficient in ounfolation. In proving
this, we found there exist a convex program that yields theessolution, however
this result is not yet applicable in an alternative impletagaon. Results show that
computational complexity is manageable even for sampkssif several tens of
thousands. The very important feature is that elementseofGtam matrix are
computed at request and do not need to be stored, neveshsfEed improve-
ments can be achieved by using a cache that temporarilyssteguently visited
samples. Several improvements in terms of speed by beléetiea heuristics and
memory trade offs can be pursued in future implementations.
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A Sufficient Conditions for Pseudo-Convex Pro-
grams

The following theorem is extracted from [5] Chapter 10.

Theorem A.1 Let X° be an open set ilR™ an let f and g be respectively and
scalar and am-dimensional vector function both definedA?. Letz* € X°,
I = {i| gi(z*) = 0}, f be pseudo-convex at’, and g be differentiable and
quasi-convex at”. If there exists gu* € R™ such that the paifz*, p*) satisfy
the following conditions:

Vi) +# " Dga")] (e —2) > 0, Vo e X’ g(x) <0 (28)
whg(zt) =
g(z”) <
>

Then,z* is a solution of the following minimization problem

min f(x)
vex? (29)
subject tog(z) < 0.

Proof Al Let] = {i| gi(z*) = 0}, J = {j| gi(z™) < 0}, thencel U J =
{1, ..., m} sincep™ > 0, g(z*) < 0, andpu™ > 0, we have thafp;}cs =
0, and from quasi convexity af at =™, the gradients ofy; at 2™ for ¢ € I are
orthogonal to tangent planes to the level sets defined; by) = 0 and therefore
for any feasible point: € X° and g(x) < 0, Dg;(z*)(z — =*) < 0, by non-
negativity ofs and sinceu.; = 0 we have:

pi Dgr(z*)(@—2") < 0 (30)
1y Dgs(a*)(z — ") 0
W Dg(a")(x — 2¥) (17" D1 (") + 13" Dgs(a")] (z - =) < 0.

Finally, since[V f(z*) + p* " Dg(z*)] (x —2*) > 0forall z € X° andg(z) <
0, we need thaV f(z*)(x — =) > 0 and thus by pseudo-convexity fofmplying
that f(x) > f(z*) forall € X° such thatg(x) < 0.

O

A generalization of the Kuhn-Tucker sufficient optimalitsiterion follows from
the above theorem by replacing condition (28) with

Vi(z") + p  Dg(z*) =0 (31)

12



B Details of the Solution to the Minimal Sub-
problem
We refer to the objective in (23) as,

J(B2) = (A — 1) log A(B2) — 2\ log B(f2). (32)
Taking the derivative of/ (32) and equating to zero yields:

d d d
d—&J(&) =0=(\~— 1)3(52)(1—5214(52) - 2)\A(52)d—523(52) (33)

where

di&A(ﬂz) =2(B2(Vi1 + Voo — Viz) + (w(Viz — Vi1) + (v2 — v1)))  (34)

and

d

— B =gy — 35

a5 (B2)=q2—q (35)
Expanding and rearranging yields (24)

13



