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Abstract

In this report, we present a sequential minimal optimization routine for the
principle of relevant information. The optimization problem is broken down into
smaller subproblems that can be solved sequentially. Conditions under which this
approach is feasible are verified and an algorithm is proposed. Although the algo-
rithm has computation complexity can beO(n2), the memory complexity is linear
in the size of the sample allowing for larger data sets that are common in practical
applications.

1 Introduction
Support vector machines and in general kernel methods have become standard in
machine learning community. These methods have become widely accepted and
have shown good results in several practical applications.However, a great part of
their success is due to possibility of implementing routines that provide solutions
for moderately large scale problems. Otherwise, these methods would be merely an
interesting mental exercise. One of the main technical difficulties when faced with
real applications is that the size of the dataset becomes a very important constraint
when it comes to selecting a method. The time and memory complexities become
relevant for data sets above five thousand instances. In off-line scenarios the most
decisive factor is the memory complexity1 since super-linear growth of storage
become intractable for the size of the samples commonly encountered in current
and new applications.

In the literature, two main approaches have been taken to make kernel meth-
ods applicable in large scale problems. Low rank approximations such as Nyström
[12], incomplete Cholesky decomposition [2, 10], subset methods [11], decompose
the Gram matrixK into a productGGT whereG is a(n×k) matrix withk ≪ n.
This methods scale with computational complexityO(nk2) and memory complex-
ity O(nk). These methods represent significant computational savings when the

1under reasonable time complexity (polynomial complexity)
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eigenvalues of the Gram matrix decay rapidly; nevertheless, as the dimensionality
of the input space increases, we may run into difficulties since the rate of decay in
the spectrum may require larger ranks(largerk) to obtain the desired accuracy.

The second approach is related to the exploiting propertiesof optimization
problem such as convexity the type of constraints. This has been the case for algo-
rithms such support vector machines for which, optimization can be broken down
into smaller subproblems that can be iteratively solved in order to solve the full
problem. Early stages employed chunking [1], which breaks down the problem
by discarding vectors with zero Lagrange multipliers from subsets of points, the
complexity of the problem is reduced to the number of supportvectors. Further
analysis on the optimality of solving a sequence of subproblems was provided in
[6], from which an algorithm that solves subproblems of fixedsize was shown to
converge to the global optimum. Keeping the size of the subproblem independent
of the number of support vectors is extremely important since even the chunk-
ing scheme becomes intractable when the number of support vectors exceed the
memory resources. Further developments on the above idea led to the SVMlight

algorithm described in [3] and the sequential minimal optimization (SMO) pro-
posed in [7]. Althought SVMlight has been shown experimentally to be faster, the
SMO algorithm is particularly appealing in the sense that there is no need to resort
to a quadratic programing routine to solve the subproblems.The solution to the
subproblem in SMO can be found analytically since it only involve two variables
at the time.

In our work, we develop an optimization scheme similar in spirit with the SMO
algorithm to find a solution to an objective function called the principle of relevant
information (PRI) [8]. This objective function is motivated by information the-
ory, by considering that the process of finding regularitiesin the data correspond
to a constrained minimization of its entropy. Section 2 introduces information
quantities based on Renyi’s entropy along with the PRI objective function. Next
in Section 3, a constrained optimization problem based on the estimators of the
quantities involved in the PRI objective function is derived. We prove that solving
the first order KKT conditions is necessary and sufficient foroptimality. In Sec-
tion 4, the conditions for which the decomposition of the problem into subprob-
lems guarantee convergence, are verified. Following, a detailed presentation of the
derivation of a sequential minimal optimization for the PRIis provided along with
some considerations for implementation. Results in Section 6 focus on observ-
ing the behavior of the algorithm in terms of computation time on large samples
and different regimes of operation. Finally, some conclusions and a motivation for
future work are discussed in Section 7.

2 Elements from Renyi’s Entropy and and Rel-
evant Information
Renyi’sα-order entropy entropy is a natural extension of the widely known Shan-
non’s entropy [9]. In the continuous case for a random variableX with probability
density function (PDF)f(x) and supportX , theα-entropyHα(X) is defined as:

Hα(f) =
1

1− α
log

∫

X

fα(x)dx. (1)
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As α → 1 we approximate to Shannon’s entropy. Extensions for relative entropy
also exist, a modified version of Renyi’s definition ofα-relative entropy between
random variables with PDFsf andg is given in [4],

Dα(f‖g) = log

(∫

gα−1f
) 1

1−α

(∫

gα
) 1

α

(∫

fα
) 1

α(1−α)

. (2)

Similarly, Shannon’s relative entropy (Kullback-Leiblerdivergence) is the limit for
α → 1. An important component in the relative entropy is the cross-entropy term
Hα(f ; g) that quantifies the information gain from observingg with respect to the
“true” densityf . It turns out that for the case ofα = 2, the above quantities can be
expressed, under some restrictions, as functions of inner products between PDFs.
In particular, the2-order entropy off and cross-entropy betweenf andg, can be
respectively expressed as,

H2(f) = − log

∫

X

f2(x)dx;

H2(f ; g) = − log

∫

X

f(x)g(x)dx,

(3)

the associated relative entropy of order2 is called the Cauchy-Schwarz divergence
and is defined as follows:

DCS(f‖g) = −
1

2
log

(∫

fg
)

2

(∫

f2
) (∫

g2
) . (4)

As we mentioned before, structure can be understood as regularities on the
outcomes of a process. Therefore, the entropy related to theoutcomes can be
attributed in part to the underlying structure, and the restto particular to each out-
come as details or simple non related perturbations. Hence,we can think of the
minimization of entropy as a means for finding such regularities. Suppose we are
given a random variableS with PDF g, for which we want to find a description
in terms of a PDFf with reduced entropy, that is, a variableX that captures the
underlying structure ofS. The principle of relevant information (PRI) formulates
the above problem as a trade-off between the entropyH2(f) of X and its descrip-
tive power about the observed random variableS in terms of their relative entropy
DCS(f‖g). For a fixed PDFg ∈ F the objective is given by:

J(f) = H2(f) + 2λDCS(f‖g), (5)

whereλ is the trade-off parameter. The minimization ofJ within a set of admis-
sible PDFsF should lead to a functionf ∈ F that has minimum entropy, but at
the same time has maximum information gain aboutg. Nevertheless, as it is often
the case, neitherg nor a suitable spaceF are given directly. The only available
information aboutg is encoded in a sampleS = {xi}

N
i=1, and some assumptions

about the function classF must be made in order to obtain a tractable solution.
The following section describes a solution to the problem that arises from the non-
parametric estimator of the quantities in equation (3), which is based on weighted
Parzen window method.
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3 The Information Potential and Principle of
Relevant Information
For the setF of probability density functions that are square integrable inR

n, we
can define the cross-information potentialV (CIP), as a bilinear form that maps
densitiesfi, fj ∈ F to the real numbers trough the integral,

V(fi, fj) =

∫

Rn

fi(x)fj(x)dx (6)

It is easy to see that for a basis of uniformly bounded, squareintegrable, probability
density functions,V is a positive semidefinite function on thespan{F}. Now
consider the setG = {g =

∑m

i=1
αiκσ(xi, ·)|xi ∈ R

n,
∑m

i=1
αi = 1, andαi ≥

0}, whereκσ is a “Parzen” type of kernel, that isκσ is symmetric, nonnegative,
has bounded integral (can be normalized), and shift invariant with σ as the scale
parameter. Clearly for anyg ∈ G we have‖g‖2 ≤ ‖κσ(x, ·)‖2 thenceG is
bounded. However, if theX is non-compact our search space is also non compact.

The objective function for the principle of relevant information (5) can be writ-
ten in terms of IP function. Using the Parzen based estimation, we restrict the
search problem toG ⊂ F . In this case, we have that equation (5) can be rewritten
as:

J(f) = − log V(f, f)− λ log
[V(f, g)]2

V(f, f)V(g, g)
(7)

straightforward manipulation of the terms yields an equivalent problem:

argmin
f∈G

[−(1− λ) log V(f, f)− 2λ log V(f, g)] (8)

Two important aspects of the above objective are: the choiceof the kernel, shape
and sizeσ, determines different scales for the analysis; the trade-off parame-
ter λ defines a set of regimes for the possible solutions to the problem. As we
previously mentioned, the only available information is contained in the sam-
ple S = {xi}

N
i=1. An approximation of the target densityg is then given by

it weighted Parzen window estimatorĝ(x) =
∑N

i=1
αiκσ(xi, x), where where

αi ≥ 0 and
∑N

i=1
αi = 1, in our experiments we limit toαi = 1/N . To enforce

compactness in our search space, we look for a solutionf that has the same form
of ĝ, that is

f(x) =
N
∑

i=1

βifi(x) =
N
∑

i=1

βiκσ(xi, x). (9)

whereβi ≥ 0 and
∑N

i=1
βi = 1. By fixing λ and evaluating the information

potential between each pair(xi, xj) ∈ S×S, we can rewrite (8) in matrix notation
as:

min
β

[

(λ− 1) logβT
Vβ − 2λ logβT

Vα
]

subject toβi ≥ 0 and
N
∑

i=1

βi = 1
(10)

Notice that the form of the problem adopted in (10) is not a convex program,
nevertheless it can be turned into an equivalent form that can be recognized as a
convex program.
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Proposition 3.1 The convex program,

min
β

β
T
Vβ

subject toβ ≥ 0

q
T
β − η = 0

1
T
β − 1 = 0,

(11)

is equivalent to(10), whereq = Vα and someη > 0.

Proof 3.1 By definitionη > 0, thus the constraintlog qTβ = log η is equivalent
to qTβ − η = 0. The positive semi definiteness of the information potential tell
us thatβTVβ ≥ 0, however, taking into accountqTβ − η = 0 guarantees strict
inequality; therefore the minimizers oflogβTVβ andβTVβ on the constraint set
defined in(11)are the same. Thence solving the following pseudo-convex program

min
β

logβT
Vβ

subject toβ ≥ 0

log qT
β = log η

1
T
β − 1 = 0,

(12)

should yield the same solution. Now,The gradient of the objective in (10) with
respect to the weight vectorβ is,

∇J(β) = 2

(

λ− 1

βTVβ

)

Vβ − 2

(

λ

βTVα

)

Vα. (13)

By including the constraints1Tβ = 1 andβ ≥ 0, for λ > 1, the set of KKT
necessary conditions for local optimality in the LagrangianL(β,µ, γ) = J(β)+
∑N

i=1
µici(β) + γe(β) is



























∂
∂β

L(β,µ, γ) = ∇J(β) +
∑N

i=1
µi

∂
∂β

ci(β) + γ ∂
∂β

e(β) = 0,
∂
∂µ

L(β,µ, γ) = c(β) ≤ 0,

µTc(β) = 0 = −µTβ,
µ ≥ 0,
∂
∂γ

L(β,µ, γ) = e(β) = 0 = 1Tβ − 1.

(14)

There are two possible cases for eachβ∗
i

• β∗
i > 0.

For whichµ∗
i = 0 and

2
ti

β∗TVβ∗
− 2

(

λ

λ− 1

)

qi

β∗Tq
+ γ = 0, (15)

wheret = Vβ.

• β∗
i = 0.

Yields

2
ti

β∗TVβ∗
− 2

(

λ

λ− 1

)

qi

β∗Tq
− µ∗

i + γ = 0. (16)
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Notice thatγ = 2
(

1

λ−1

)

, therefore,

2
Vβ∗

β∗TVβ∗
− 2

(

λ

λ− 1

)

q

β∗Tq
− µ

∗ + 2
1

λ− 1
= 0. (17)

Pre-multiplying(17) by (β − β∗) in the constraint set, yields the following set of
conditions

(β − β
∗)T

[

2
Vβ∗

β∗TVβ∗
− µ

∗

]

≥ 0, ∀β ≥ 0 : q
T
β = η,1T

β = 1

µ
∗T

β
∗ = 0

−β∗ ≤ 0

µ
∗ ≥ 0

log qT
β

∗ = log η

1
T
β

∗ = 1, (18)

which by Theorem A.1 are sufficient conditions for the solution of a pseudo-convex
function defined on an open set with convex inequality constraints, that in our case
corresponds to(12)

�

Two important results come from the above proposition. One is obvious from the
statement in the proposition that tells us there exist an equivalent convex program
that solves (10). But even better is the one that comes as a byproduct of the proof.
The KKT first order conditions in (14) are necessary and sufficient to solve (10).

4 Decomposition into Smaller Subproblems
In the proof of Proposition 3.1 we solve a more convenient form of (10), for which
we factorize(λ−1) from the objective. If we derive the the solution for the original
problem the two cases (15) and (16) are replaced by:

• β∗
i > 0.

With µ∗
i = 0 and

2
λ− 1

β∗TVβ∗
ti − 2

λ

β∗Tq
qi + γ = 0, (19)

wheret = Vβ.

• β∗
i = 0.

2
λ− 1

β∗TVβ∗
ti − 2

λ

β∗Tq
qi − µ∗

i + γ = 0. (20)

Note that combining (19) and (20) with the optimalβ∗ we have thatγ = 2,
using this fact along with the non-negativity ofµ, the following condition
should hold,

Ati −Bqi > 1, (21)

whereA = λ−1

β∗TVβ∗
andB = λ

β∗Tq
.
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Let’s partition the set of indexes of the entries ofβ into W , the working set, and
P the complementary set of inactive elements. Thenβ =

(

βT

W , βT

P

)T

, for which
we define the following subproblem:

min
βW

[

(λ− 1) log
(

β
T

WVWWβW + 2βT

PVPWβW + β
T

PVPPβP

)

+

− 2λ log
(

β
T

WqW + β
T

PqP

)]

subject to − βW ≤ 0, and
[

β
T

W1+ β
T

P1
]

= 1

(22)

Similar remarks to the ones made in [6] can be obtained for (22):

• The termsϕA = βT

PVPPβP andϕB = βT

PqP are constant in the subprob-
lem

• The computation of2βT

PVPWβW is independent of the size ofP and also
of the number of nonzeroβi’s

• Replacingβi, with i ∈ W with βj with j ∈ P leaves the cost unchangend
and the feasibility remains intact.

• If the subproblem is optimal before the above replacement, the new subprob-
lem is optimal if and only ifβj satisfies the optimality conditions.

The so called “Buld down” step is rather obvious. Now the “Buld up” step that
states that moving a variable fromP to W gives an strict improvement in the
cost when the subproblem is re-optimized. In our case we can justify the build
up since we prove that the KKT first order conditions are necessary and sufficient
for a solution to (10). These build down and build up steps suggest an strategy
for optimizing (10) by solving smaller subproblems. At eachiteration, solve a
subproblem that include a constraint violator picked from the complementary set
P . Iterate until optimality conditions are satisfied up two some desired level of
accuracy.

5 Sequential Minimal Optimization
In the previous section (4), the optimization problem related to the principle of
information, was decomposed into smaller subproblems thatcan be solved itera-
tively to achieve the solution to the full problem. An important characteristic of
such decomposition is that the size of the working setW and the complementary
setP , are independent of the number of support vectors in the solution, that is,
theβ∗

i ’s greater than zero. The sequential minimal optimization proposed in [7]
chooses the smallest subproblem that can be solved at each iteration. This corre-
sponds to solving for two variables at the time, which can be found analytically.
The latter is of particular appeal to the solve PRI since our cost does not have an
standard form as it is the case for SVMs (quadratic program),therefore, we cannot
resort to off the shelf solvers for our problem.

Without loss of generality we will refer to our variables in the working set
asβ1 andβ2 and the complementary set asP . By the equality constraint in the
subproblem (22) we have thatβ1 + β2 = 1−βT

P1 = w and thenceβ1 = w− β2.
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Let us denote bȳβi the value ofβi from the previous iteration. We can formulate
the subproblem in terms ofβ2 as:

min
β2

[(λ− 1) logA(β2)− 2λ logB(β2)]

subject to 0 ≤ β2 ≤ w, and w = β̄1 + β̄2,
(23)

with

A(β2) = β2

2(V11+V22−2V12)+2β2(w(V12−V11)+(υ2−υ1))+w2V11+2wυ1+ϕA

whereυi = Viβ̄ − V1iβ̄1 − V1iβ̄2, andϕA = βP
TVPPβP ; and

B(β2) = β2(q2 − q1) + wq1 + ϕB

whereϕB = βP
TqP . The solution to problem (23) lies on the line segment

β1 = w− β2 with 0 ≤ β2 ≤ w. Computing the derivative of the objective in (23)
yields a second order polynomial onβ2 (Details are given in Appendix B), thus
solving

c2β
2

2 + c1β2 + c0 = 0 (24)

with coefficients:

c2 = −2(V11 + V22 − 2V12)(q2 − q1)

c1 = 2(λ− 1)(wq1 + ϕB)(V11 + V22 − 2V12) +

−2(λ+ 1)(w(V12 − V11) + (υ2 − υ1))(q2 − q1)

c0 = 2(λ− 1)(w(V12 − V11) + (υ2 − υ1))(wq1 + ϕB) +

−2λ(w2V11 + 2wυ1 + ϕA)(q2 − q1)

conveys candidate solutions that ought be checked along with the end points of the
line segment. Letr1 andr2 be the roots of (24). Ruling out cases with complex
numbers, we have:

L = min{r1, r2} and U = max{r1, r2}

the candidate solutions are,

s1 =







0 L ≤ 0
L 0 < L < w
w L ≥ w

and s2 =







0 U ≤ 0
U 0 < U < w
w U ≥ w

(25)

If s1 6= s2 we checkJ(si) = [(λ− 1) logA(si)− 2λ logB(si)] and

β2 = arg min
si∈{s1,s2}

{J(si)} (26)

otherwise,β2 = s1 = s2.

5.1 SMO algorithm
The algorithm can be described into three basic steps:
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Step 1: Initialization

q ← Vα

f ← q

β ← α

IP (β) ← β
T
q

CIP (β) ← IP (β)

Step 2: Constants within an iteration

υi ← fi − V1iβ̄1 − V2iβ̄2

ϕA ← IP (β̄)− (2(β̄2f1 + β̄2f2)− (β̄2

1V11 + β̄2

2V22 + 2β̄1V12β̄2))

ϕB ← CIP (β̄)− (β̄1q1 + β̄2q2)

w ← β̄1 + β̄2

Step 3: Updates

β2 ← solution described in (26)

β1 ← w − β2

f ← f̄ + (β̄2 − β2)V
T

1 + (β2 − β̄2)V
T

2

IP (β) ← ϕA + (2(β1f1 + β2f2)− (β2

1V11 + β2

2V22 + 2β1V12β2))

CIP (β) ← ϕB + (β1q1 + β2q2)

Steps 2 and 3 are iterated for different working sets chosen according to some
heuristics that are described below.

5.2 Selecting the working set
There are two type of constraint violations, an equality constraint (19) ifβi > 0,
and the inequality constraint (21) ifβi = 0. The constraint violations are easy to
compute at each iteration. Letξ be defined as

ξ = 2
λ− 1

IP (β)
f − 2

λ

CIP (β)
q, (27)

the constraint qualifications areξi = 2 if βi > 0, andξi > 2 if βi = 0. In teh
description of our algorithm we chose to initializeβ with the same values ofα.
However our cost function suggest that points for whichqi is large will be expected
to become support vectors, that isβi > 0. We can then useβ = q/(qT1) as the
initial guess. However this would imply the computation off at the initialization.
It is customary to chooseα = 1

N
1. Then at the initial iteration all constraints

will be violated (unlessλ → ∞). One pass through the whole set taking pairs of
indexes(i, j), wherei correspond to a descending order of the samples according
to f andj’s taken at random will create the first stage of sparseness inour weight
vectorβ; this is our first heuristic. After this pass, we can check whether (21) is
satisfied for the currentβi’s that are zero. A second stage suggest checking the
within the set of samples withβi > 0, and for whichξi > 2 since they are most
likely to vanish. We will stop when conditions are fulfilled within ǫ tolerance.
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Figure 1: Computation times for different tolerance levelsand sample sizes
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Figure 2: Number of support vectors for different tolerancelevels and sample sizes

6 Experiments

6.1 Synthetic Data
Here, we are concerned with the computation of the principleof relevant infor-
mation on large sample sizes. The purpose of this experimental setup is to ob-
serve the behavior of the algorithm in terms ofλ which controls the number of
nonzero weights and therefore the number of equality constraints that are much
harder to satisfy. Data is obtained by sampling from a two dimensional mix-
ture of three Gaussians with centers(0, 0), (3, 3), and(−6, 4); spherical co-
variances0.82I, 1.22I, andI; and mixing proportions0.2, 0.3, and0.5, respec-
tively. The kernel employed in our experiments is the Gaussian kernelκ(x, y) =
exp (− 1

2σ2 ‖x− y‖2), with σ = 0.2. Figure 1 depicts the computation times
for different tolerance levels on the constraint violations as well as various sample
sizes and trade off parameterλ. Figure 2 shows the final number of support vectors
(nonzero weights) when the above mentioned parameters are varied.

First notice that the kernel sizeσ was kept fixed regardless of the size of the
sample. this allows for studying the algorithm behavior in terms of sparsity of data,
which in this case correspond to small sample sizes. The tolerance level has a clear
effect on the computation time, but more interesting is the effect on the number of
support vectors which reduces when the level of accuracy increase. On the small
sample regime, the increment on the computation time due to the more demanding
tolerance levelǫ = 10−3 can be attributed to the scarcity of data which makes the
cost function much more sensitive to any change in the weightvectorβ. In terms
of computational complexity the algorithm behaves within the reasonable levels, In
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the experiments carried we bound the maximum number of iterations byN logN .
This bound upper bound was never attained by the larger sample sizes and only
reached by small sample sizes on the most demanding scenarios, that is, smallǫ
and largeλ, since the trade off parameterλ is closely related with the number of
support vectors and thus the proportion of constraint violators increases.

7 Conclusions
We have introduced a sequential minimal optimization algorithm for the principle
of relevant information based on weighted density estimation. In order to guaran-
tee convergence of the algorithm, we show that the Karush-Kuhn-Tucker first order
optimality condition are necessary and sufficient in our formulation. In proving
this, we found there exist a convex program that yields the same solution, however
this result is not yet applicable in an alternative implementation. Results show that
computational complexity is manageable even for sample sizes of several tens of
thousands. The very important feature is that elements of the Gram matrix are
computed at request and do not need to be stored, nevertheless, speed improve-
ments can be achieved by using a cache that temporarily stores frequently visited
samples. Several improvements in terms of speed by better selection heuristics and
memory trade offs can be pursued in future implementations.
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A Sufficient Conditions for Pseudo-Convex Pro-
grams
The following theorem is extracted from [5] Chapter 10.

Theorem A.1 Let X 0 be an open set inRn an let f and g be respectively and
scalar and am-dimensional vector function both defined inX 0. Let x∗ ∈ X 0,
I = {i| gi(x

∗) = 0}, f be pseudo-convex atx∗, and g be differentiable and
quasi-convex atx∗. If there exists aµ∗ ∈ R

m such that the pair(x∗,µ∗) satisfy
the following conditions:

[

∇f(x∗) + µ
∗TDg(x∗)

]

(x− x∗) ≥ 0, ∀x ∈ X 0; g(x) ≤ 0 (28)

µ
∗Tg(x∗) = 0

g(x∗) ≤ 0

µ
∗ ≥ 0

Then,x∗ is a solution of the following minimization problem

min
x∈X0

f(x)

subject tog(x) ≤ 0.
(29)

Proof A.1 Let I = {i| gi(x
∗) = 0}, J = {j| gi(x

∗) < 0}, thenceI ∪ J =
{1, . . . , m} sinceµ∗ ≥ 0, g(x∗) ≤ 0, andµ∗ ≥ 0, we have that{µj}j∈J =
0, and from quasi convexity ofg at x∗, the gradients ofgi at x∗ for i ∈ I are
orthogonal to tangent planes to the level sets defined bygi(x) = 0 and therefore
for any feasible pointx ∈ X 0 and g(x) ≤ 0, DgI(x

∗)(x − x∗) ≤ 0, by non-
negativity ofµ and sinceµJ = 0 we have:

µ
∗
I
T
DgI(x

∗)(x− x∗) ≤ 0 (30)

µ
∗
J
T
DgJ(x

∗)(x− x∗) = 0

µ
∗TDg(x∗)(x− x∗) =

[

µ
∗
I
T
DgI(x

∗) + µ
∗
J
T
DgJ(x

∗)
]

(x− x∗) ≤ 0.

Finally, since
[

∇f(x∗) + µ∗TDg(x∗)
]

(x− x∗) ≥ 0 for all x ∈ X 0 andg(x) ≤
0, we need that∇f(x∗)(x− x∗) ≥ 0 and thus by pseudo-convexity off implying
thatf(x) ≥ f(x∗) for all x ∈ X 0 such thatg(x) ≤ 0.

�

A generalization of the Kuhn-Tucker sufficient optimality criterion follows from
the above theorem by replacing condition (28) with

∇f(x∗) + µ
∗TDg(x∗) = 0 (31)
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B Details of the Solution to the Minimal Sub-
problem
We refer to the objective in (23) as,

J(β2) = (λ− 1) logA(β2)− 2λ logB(β2). (32)

Taking the derivative ofJ(β2) and equating to zero yields:

d

dβ2

J(β2) = 0 = (λ− 1)B(β2)
d

dβ2

A(β2)− 2λA(β2)
d

dβ2

B(β2) (33)

where

d

dβ2

A(β2) = 2(β2(V11 + V22 − V12) + (w(V12 − V11) + (υ2 − υ1))) (34)

and
d

dβ2

B(β2) = q2 − q1 (35)

Expanding and rearranging yields (24)
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